Awardees' Articles

HFSP Program Grant holders Alex Dickson, Danny Hatters and Simon Ebbinghaus and colleagues

Tuesday 20th February 2018

A healthy protein quality control system inside cells, which includes molecular chaperones, is of utmost importance to prevent the accumulation and aggregation of unfolded protein. Under certain conditions, such as diseases and stresses, these quality control systems can become overstretched or remodeled, impairing cellular function. Unfortunately, quantitative ways to monitor dynamic changes in proteostasis are limited. To address this gap, we developed a biosensor system that enables a measurement...

 

HFSP Long-Term Fellow Andreas Sagner and colleagues

Monday 19th February 2018

Motor neurons, the nerve cells of the spinal cord that control muscle movement, form much faster than other neurons during development of the vertebrate spinal cord. Reconstruction of how the activity of genes changes as motor neurons form revealed that this effect is due to the activity of the Olig2 gene product, which promotes motor neuron formation by directly interfering with the expression of Hes genes - known antagonists of neuron formation.

 

HFSP Career Development Award holder Knut Drescher and colleagues

Thursday 15th February 2018

Bacteria can live as isolated individual cells, but they most commonly grow in communities termed biofilms, which are held together by an extracellular matrix. It has now been discovered that bacteria form biofilms in order to protect themselves from viral predators of bacteria, using the extracellular matrix as a viral barrier.

 

HFSP Long-Term Fellow Calin Plesa and colleagues

Thursday 15th February 2018

DropSynth is a simple, low-cost method to build thousands of genes in a single reaction. These gene libraries can serve as input to multiplex assays, where many DNA encoded hypotheses are barcoded and tested together.

 

HFSP Long-Term Fellow Lindsay Baker and colleagues

Tuesday 6th February 2018

Membrane proteins are challenging targets for structural biology as their native environment is heterogeneous and complex, so most methods rely on detergents to extract membrane proteins from their environment. As this removal can significantly alter the structure and function of these proteins, we have developed a hybrid method to study membrane proteins in their native membranes, combining high-resolution solid-state NMR spectroscopy and electron cryotomography of the same sample.

 

HFSP Long-Term Fellow Suphansa Sawamiphak and colleagues

Thursday 1st February 2018

The mammalian heart has very limited regenerative ability. Studying organisms capable of repairing their cardiac muscle after injury may help us to understand how to improve regeneration of the human heart. We found that in zebrafish individual cardiac muscle cells can transiently fuse with each other, allowing exchange of cell contents in response to high demand of cell proliferation during development and regeneration of the heart. Our data suggest that transient cell fusion in the heart might...

 

HFSP Long-Term Fellow Maria Casanova-Acebes and colleagues

Tuesday 30th January 2018

Immune cells play a major role in early breast cancer even before a tumor is detectable. Disruption of macrophages and early cancer cells interaction can prevent early dissemination and consequently, metastasis in breast cancer patients.

 

HFSP Program Grant holders Matthew Rockman, Boris Shraiman and Henrique Teotónio and colleagues

Monday 29th January 2018

Genetic variation is a ubiquitous feature of populations, but the nature of the connection between variation at the molecular level and variation in organismal fitness has been elusive. We tackled this problem by measuring fitness traits in a newly developed genetic mapping panel of the nematode Caenorhabditis elegans.

 

HFSP Program Grant holder Ian Baldwin and colleagues

Thursday 25th January 2018

Plants can effectively get rid of herbivores by "calling for help" using odors which attract animals that eat herbivores; but herbivores feed on plants day and night, and may try to escape danger by choosing to feed when their enemies are not active. By producing a combination of rapidly and slowly released odors, both of which are attractive to herbivores' enemies, plants can always "call for help" at the right time, regardless of when herbivores feed.

 

HFSP Program Grant holders Marcus Conrad, Valerian Kagan, Judith Klein-Seetharaman and Fulvio Ursini and colleagues

Tuesday 16th January 2018

Multicellular life developed genetically determined programs for the elimination of irreparably injured cells. While apoptosis has been in the focus of cell death for many years, the recognition that cells with accumulated excessive levels of (geno)toxic materials also die by regulated necrotic cell death routines has sparked great interest among researchers and drug makers. The latest addition to the list of these cell death programs is ferroptosis - a network of reactions engaging three major...