Skip to main content
2019 -
Grant Awardees - Program

Decoding the biomechanics of flight-tone based acoustic communication in mosquitoes

GIBSON Gabriella (USA)

Dept. of Agriculture, Health and Environment - University of Greenwich - London - UK

MITTAL Rajat (USA)

Dept. of Mechanical Engineering - Johns Hopkins University - Baltimore - USA

The aerial courtship “dance” of mosquitoes has fascinated entomologists for over 150 years. This dance involves highly controlled variations in the frequency and intensity of flight-tones (i.e. sounds generated by the flapping wings) with concurrent changes in flight speed and direction, and enables recognition of conspecifics, display of fitness and transmission of mating interest. However, despite over a century and a half of research, significant knowledge gaps continue to exist in our understanding of this behavior. To decipher this courtship dance, entomologists have to integrate acoustic, energetic and flight information for untethered, free-flying mosquitoes, but the tools that can provide these data have, so far, not been available. In the current project, the two investigators combine their respective expertise in computational biomechanics and acoustics, and behavioral entomology, to generate unprecedented data and insights into the biomechanics and physics of courtship-associated acoustic communication in mosquitoes. In particular, by combining computational modeling with biological assays, the team will generate six-dimensional soundscapes of free-flying mosquitoes engaged in courtship and determine how these soundscapes are actively modified during courtship. We will also estimate for the first time, the energetic costs of courtship and mate-chasing, and the potential constraints this places on courtship behavior. Finally, the team will characterize the degree to which, carefully tailored exogenous sounds can alter and even disrupt courtship. The success of this novel approach could be transformative for future research into comparative auditory mechanisms of communication across a wide range of flying insects. In addition, the insights gleaned here could form the scientific foundation for novel insecticidal/surveillance traps and also lead to environmentally friendly strategies for diminishing mating success in mosquito species that are vectors for malaria, Zika fever and other devastating mosquito-borne diseases.